Iteration-Free Computation of Gauss-Legendre Quadrature Nodes and Weights

نویسنده

  • Ignace Bogaert
چکیده

Gauss–Legendre quadrature rules are of considerable theoretical and practical interest because of their role in numerical integration and interpolation. In this paper, a series expansion for the zeros of the Legendre polynomials is constructed. In addition, a series expansion useful for the computation of the Gauss–Legendre weights is derived. Together, these two expansions provide a practical and fast iteration-free method to compute individual Gauss–Legendre node-weight pairs in O(1) complexity and with double precision accuracy. An expansion for the barycentric interpolation weights for the Gauss–Legendre nodes is also derived. A C++ implementation is available online.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast and Accurate Computation of Gauss-Legendre and Gauss-Jacobi Quadrature Nodes and Weights

An efficient algorithm for the accurate computation of Gauss–Legendre and Gauss– Jacobi quadrature nodes and weights is presented. The algorithm is based on Newton’s root-finding method with initial guesses and function evaluations computed via asymptotic formulae. The n-point quadrature rule is computed in O(n) operations to an accuracy of essentially double precision for any n ≥ 100.

متن کامل

Fast and rigorous arbitrary-precision computation of Gauss-Legendre quadrature nodes and weights

We describe a strategy for rigorous arbitrary-precision evaluation of Legendre polynomials on the unit interval and its application in the generation of Gauss-Legendre quadrature rules. Our focus is on making the evaluation practical for a wide range of realistic parameters, corresponding to the requirements of numerical integration to an accuracy of about 100 to 100 000 bits. Our algorithm com...

متن کامل

Computation of Gauss-kronrod Quadrature Rules with Non-positive Weights

Recently Laurie presented a fast algorithm for the computation of (2n + 1)-point Gauss-Kronrod quadrature rules with real nodes and positive weights. We describe modifications of this algorithm that allow the computation of Gauss-Kronrod quadrature rules with complex conjugate nodes and weights or with real nodes and positive and negative weights.

متن کامل

An effective method for approximating the solution of singular integral equations with Cauchy kernel type

In present paper, a numerical approach for solving Cauchy type singular integral equations is discussed. Lagrange interpolation with Gauss Legendre quadrature nodes and Taylor series expansion are utilized to reduce the computation of integral equations into some algebraic equations. Finally, five examples with exact solution are given to show efficiency and applicability of the method. Also, w...

متن کامل

Interpolation approximations based on Gauss-Lobatto-Legendre-Birkhoff quadrature

We derive in this paper the asymptotic estimates of the nodes and weights of the Gauss-Lobatto-Legendre-Birkhoff (GLLB) quadrature formula, and obtain optimal error estimates for the associated GLLB interpolation in Jacobi weighted Sobolev spaces. We also present a useroriented implementation of the pseudospectral methods based on the GLLB quadrature nodes for Neumann problems. This approach al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2014